Характеристика стадий элементарной сенсорной психики; СтудИзба — стадия элементарной сенсорной психики

13.11.2018

Нервные надглоточные узлы — примитивный головной мозг (особенность данного

Характеристика стадий элементарной сенсорной психики

Характеристика стадий элементарной сенсорной психики.

1. Сетчатая (диффузная) нервная система (гидра).

Нервные надглоточные узлы — примитивный головной мозг (особенность данного

Поделитесь ссылкой пожалуйста:

Рекомендуемые лекции

Для добавления файла нужно быть зарегистрированным пользователем. Зарегистрироваться и авторизоваться можно моментально через социальную сеть «ВКонтакте» по кнопке ниже:

Вы можете зарегистрироваться стандартным методом и авторизоваться по логину и паролю с помощью формы слева.

Не забывайте, что на публикации файлов можно заработать.

Источник: http://studizba.com/lectures/61-psihologiya/991-sravnitelnaya-psihologiya/18299-harakteristika-stadiy-elementarnoy-sensornoy-psihiki.html

Низший уровень стадии элементарной сенсорной психики. 976

С появлением жизни на земле живая материя приобретает новые качества – способность реагировать на внешние воздействия среды определенными биологическими процессами. Общим свойством всех живых организмов является раздражимость. Раздражимость является необходимым условием обмена веществ между организмом и средой. Это биологическая форма отражения. Живой организм отвечает активности (внешней и внутренней) на прямые воздействия, которые положительно или отрицательно сказываются на организме. Так, например, питательные вещества, растворенные в воде, вызывают у инфузории процесс ассимиляции, т.е. усвоение их. Прикосновение постороннего тела к оболочке амебы вызывает процесс захвата (независимо от особенностей этого тела).

Таким образом, с появлением жизни отражение становится качественно другим – существа проявляют активность, они избирательно реагируют на воздействия вследствие способности к саморегуляции.

Раздражимость является основой появления более высокого уровня отражения – психического, которую А.Н.Леонтьев назвал чувствительностью.

Чувствительность по отношению к нейтральным раздражителям, если они начинают сигнализировать о появлении жизненно важных воздействий, вызывает коренные изменения в формах жизни. Главное заключается в том, что живое существо начинает активно ориентироваться в окружающей среде, активно реагировать на каждое изменение, происходящее в ней, т.е. начинает вырабатывать индивидуально изменчивые формы поведения в отличие от растительного мира.

На первых порах выработка такого индивидуально меняющегося поведения происходит относительно медленно, однако, несмотря на это, его удается наблюдать даже в условиях эксперимента, когда одноклеточные чувствительны к теплу, но не чувствительны к свету. Поэтому если их поместить в равномерно нагретую камеру, часть которой освещена, в то время как другая часть затемнена, они равномерно распределятся по всей камере. Если, наоборот, одну сторону равномерно освещенной камеры нагреть, они сосредоточиваются в нагретом конце камеры. Однако, если в течение длительного времени освещать нагретый конец камеры и затемнять ненагретый, положение дела меняется, и одноклеточные становятся чувствительны к свету, который сейчас приобретает для них значение сигнала к повышению температуры.

Описанные процессы раздражимости по отношению к биотическим влияниям, чувствительности, и по отношению к нейтральным раздражителям, сигнализирующим о появлении жизненно важных воздействий и элементарном сохранении следов, достаточны для поддержания жизни одноклеточных животных, однако их недостаточно с переходом к многоклеточным.

3. Высший уровень стадии элементарной сенсорной психики.

Переход от одноклеточных форм жизни к многоклеточному существованию усложняет жизнедеятельность животного и приводит к возникновению необходимости усовершенствования проведения возбуждения – его распространение должно значительно ускорить.

Исследование показали, что если скорость распространения возбуждения по протоплазме не превышает 1-2 микрона в секунду, скорость распространения возбуждения по простейшей нервной системе несравненно большая: она достигает 0,5 метров в секунду; скорость проведения возбуждения в нервной системе лягушки достигает до 25 метров в секунду, а у человека – 125 метров в секунду.

Все это обеспечивает несравненно лучшие условия для приспособления многоклеточного животного к окружающей среде и переводит поведение на следующий этап – этап нервной жизни.

Какими же особенностями отличается простейшая нервная система в тех ее формах, которые мы наблюдаем на ранних этапах филогенеза – медузы, гидры, морские звезды, наиболее просто организованных водных многоклеточных?

Характерной особенностью этой нервной системы является тот факт, что вся она состоит из сети нервных волокон, которые возбуждаются особо чувствительными клетками «сензиллами», расположенными на поверхности тела животного, и передают это возбуждение на элементарные двигательные клетки «миомы», возбуждение которых и приводит к сокращению тела животного.

С появлением специальных высокочувствительных рецепторных клеток и сетевидной нервной системы возникает повышенная чувствительность не только к контактным, но и дистанционным раздражителям.

Однако, сетевидная нервная система не обладает способностью переработать воспринимаемую информацию и еще в недостаточной степени обеспечивает программирование и контроль поведения животных, так как на этой фазе у животного еще нет постоянного ведущего головного конца.

Формы поведения, обеспечивающиеся сетевидной нервной системой, вполне достаточны для простейших условий водного существования животных питающих диффузной (растворенной в воде или взвешенной в ней) пищей. Однако, они становятся совершенно недостаточными при дальнейшем усложнении форм существования, при переходе к питанию дискретной (растительной и животной) пищей и особенно при переходе к условиям наземного существования. На этих этапах условия существования животного становятся несравненно более сложными. Животное должно не просто воспринимать сигналы о поступающей пище или об угрожающих его существованию воздействиях, оно должно активно искать пищу, ориентироваться в окружающей среде, активно воспринимать сигналы, говорящие о пище или указывающие на появляющуюся опасность.

Все это может быть обеспечено лишь при условии появления новых форм нервной системы и выделения центрального нервного аппарата, контролирующего поведение. Появление центральной нервной системы можно наблюдать в классе червей в виде переднего ганглия.

Передний ганглий позволяет объединить информацию, полученную от рецепторов химической, механической, и световой чувствительности, выработать и хранить дифференцированные программы реакций и передавать их на соответствующие сегментарные мотонейроны, обеспечивая тем самым контроль над дальнейшим поведением.

Наличие переднего ганглия дает животному возможность не только обучаться, приспосабливаться к новым условиям, но и переучиваться (например, с Т-образным лабиринтом).

Однако, сформированный «навык» имел очень костный характер, и животному нужно было значительное число проб, чтобы сменить один выработанный навык на другой.

Несмотря на это, появление первой центральной нервной системы знаменует собой существенный скачок в развитии форм поведения животных.

Подобное поведение животного возможно благодаря существованию определенных органов, являющихся материальной основой психического. На стадии элементарного поведения в развитии животных наблюдается дифференциация органов чувствительности. Например, если у низших животных клетки, чувствительные к свету, рассеяны по всей поверхности тела и эти животные обладают лишь общей светочувствительностью, то уже у червей (рис. 1) эти клетки стягиваются к головному концу тела (А) и приобретают форму пластинок (В), что позволяет им более точно ориентироваться по отношению к свету. На более высокой ступени развития стоят моллюски. Ввиду выгибания пластинок светочувствительные органы приобретают сферическую форму (С), благодаря чему моллюски в состоянии воспринимать движение окружающих объектов.

стадия элементарной сенсорной психики

Рис. 1. Дифференциация органов чувств у животных на стадии элементарною поведения

У животных, достигших в своем развитии стадии элементарного поведения, более развиты органы движения (что связано с необходимостью преследования добычи) и специальный орган связи и координации процессов поведения — нервная система.

В процессе дальнейшего развития нервной системы наблюдается выделение центральных нервных узлов, или ганглиев. Этот уровень развития нервной системы получил название узловой нервной системы. Возникновение узлов в нервной системе связано с образованием сегментов тела животного (рис. 2).

стадия элементарной сенсорной психики

Рис. 2.Узловая нервная система животных

При этом наблюдается усложнение поведения животного. Во-первых, характерно появление цепного поведения, представляющего собой цепь реакций на отдельные, последовательно действующие раздражители. Описывая данный тип поведения, А.Н.Леонтьев приводит в качестве примера поведение некоторых насекомых, откладывающих яйца в коконы других видов. Вначале насекомое направляется к кокону под влиянием обоняния. Затем при приближении к кокону насекомое действует зрительно. Наконец, само откладывание совершается уже в зависимости от того, подвижна ли личинка в коконе или нет, что обнаруживается при прямом контакте с коконом, т. е. на основе осязания (рис. 3).

Цепное поведение характерно для червей, насекомых и паукообразных, у которых оно достигает высшей ступени развития. Поиск пищи у них происходит, как считает известный русский зоопсихолог В.А.Вагнер, «при посредстве какого-либо одного органа чувств без содействия других органов: осязания, реже обоняния и зрения, но всегда только одного из них». Следует подчеркнуть, что эта линия развития поведения к дальнейшим прогрессивным и качественным изменениям не ведет.
стадия элементарной сенсорной психики
Рис. 3.Пример цепного поведения

Следующий этап эволюции нервной системы приводит к возникновению ганглиозной нервной системы (впервые – у червей), достигшей максимальной сложности у высших беспозвоночных, и прежде всего у насекомых. Как появление ганглиозной нервной системы, так и формирование поведения с ее помощью знаменует важнейший скачок в эволюции жизнедеятельности.

Уже у наиболее простых беспозвоночных (червей) можно проследить совсем новый принцип организации нервной системы по сравнению с предыдущей стадией. На переднем, головном конце находится нервный центр, где сосредоточены волокна, которые заканчиваются химическими и тактильными рецепторами. Эти аппараты воспринимают химические, термические, световые изменения, а также изменения влажности, происходящие во внешней среде. В головном ганглии эти сигналы перерабатываются, и возникающие «программы» поведения в виде двигательных импульсов распространяются по цепочке нервных ганглиев, каждый из которых соответствует отдельному сегменту тела. Здесь возникает новый принцип — централизованность нервной системы, — резко отличающийся от принципа построения диффузной (сетевидной) нервной системы. Головной конец червя приобретает ведущую роль, в то время как сегментарные ганглии сохраняют относительную автономию. Это легко проследить, если разрезать червя пополам: передняя половина будет закапываться в землю, сохранив организованное движение, в то время как задняя будет беспорядочно извиваться (т.е. без всяких признаков организованного движения).

Усложнение строения нервной системы на стадии червей позволяет проследить у них более совершенные (хотя еще очень примитивные) виды формирования новых, индивидуально-приобретенных видов поведения, что было показано известным американским психологом Иерксом. Он помещал червей в Т-образную трубку (простейший лабиринтов левом конце которой их ожидал электрический удар. При многократном повторении эксперимента дождевой червь приобретал «навык» избегать электрического удара и двигаться вправо (150 проб). Если повторять этот опыт после длительной паузы, «обучение» протекает вдвое быстрее (80 проб). Отсюда видно, что ганглиозная нервная система позволяет не только вырабатывать новые формы поведения, но и сохранять выработанные навыки, иначе говоря, дождевой червь обладает примитивной формой памяти.

Дальнейшая эволюция поведения связана с появлением сложно дифференцированных аппаратов рецепции, позволяющих воспринимать высокоспециализированную информацию из внешней среды и, с развитием сложнейших программ, помогающих животному приспосабливаться к сложным, хотя устойчивым, постоянным условиям среды.

Особенно наглядно это проявляется у членистоногих. Насекомые располагают большим числом высокодифференцированных рецепторов. Например, сложный фоторецептор у насекомых носит характер фасеточного глаза, состоящего иногда из многих тысяч самостоятельных ячеек. У позвоночных же фоторецептор принимает форму хорошо известного нам единого глаза, позволяющего воспринимать отражение предмета и менять четкость отражения с помощью преломляющего аппарата — хрусталика.

Наряду со сложным фоторецептором насекомые имеют специальные тактильно-химические рецепторы (в усиках), вкусовые рецепторы (в полости рта и на ножках), вибрационные рецепторы (в перепонках ножек или крыльев), реагирующие на тончайшие ультразвуковые колебания, и, возможно, еще целый ряд неизвестных нам видов рецепторных аппаратов. Возбуждения этих рецепторных аппаратов распространяются по нервным волокнам и приходят в передний ганглий (прототип головного мозга), переводящий эти импульсы в сложнейшие системы врожденных программ поведения.

Сложнейшие программы поведения насекомых представляют настолько большой интерес, что требуют специального подробного рассмотрения. Особенность сложнейших программ (а это подавляющая часть поведения насекомых) — в том, что они врожденные и передаются по наследству, принимая широко известную форму инстинктивного поведения. Эти программы вырабатываются многими миллионами поколений и передаются наследственно так же, как особенности строения тела. Примеры врожденных программ поведения насекомых очень многочисленны. Нередко они настолько сложны и целесообразны, что некоторые исследователи считали их примером разумного поведения. Например, известно, что комар откладывает яички на поверхность воды и никогда не откладывает их на сушу, где они неизбежно высохнут. Оса Сфекс откладывает яички в тело гусеницы с тем, чтобы личинки не испытывали недостатка в пище. Для этого она с Удивительной точностью предварительно прокалывает грудной ганглий гусеницы, чтобы она не погибла, а лишь была обездвижена. Нужно ли говорить о врожденных программах поведения паука, ткущего удивительную по своей конструкции паутину, или о врожденных программах поведения пчелы, которая строит соты идеальной с точки зрения экономии, формы, наполняет их медом и запечатывает воском. Все это и давало основания многим авторам говорить о целесообразности инстинктов, сближая их с разумным поведением.

Лишь в последнее время исследования этологов внесли яс­ность в эту загадочную форму поведения, доказав, что за фор­мой деятельности, поражающей своей сложностью, скрыты эле­ментарные механизмы, а программы инстинктивного поведения на самом деле вызываются элементарными стимулами, кото­рые пускают в ход врожденные циклы приспособительных ак­тов. Так, откладывание яичек комара на водную поверхность вызывается блеском воды; поэтому достаточно заменить воду блестящим зеркалом, чтобы комар начал откладывать яички на его поверхность. Сложная врожденная программа деятельности паука, который бросается на муху, запутывающуюся в паутине, на самом деле вызывается вибрацией последней, и если к паутине прикасается вибрирующий камертон, паук бросается на него так же, как на муху.

Описанные механизмы позволяют сделать существенный шаг в понимании процессов, лежащих в основе врожденного поведения, и перейти от простого описания к его объясне­нию, показать, насколько инстинктивное поведение отлича­ется от разумного. Все описанные наблюдения позволили убе­диться в том, что, несмотря на очень сложные программы врожденного поведения, доминирующие у беспозвоночных, они запускаются в ход относительно простыми сигналами, отражающими условия существования животного, т.е. запуск врожденных программ поведения определяется лишь отдель­ными определенными признаками среды. Например, при­знаками, на которые реагирует пчела, когда избирательно садит­ся на те или иные виды медоносных цветов, могут являться сложная форма, а иногда окраска цветка. В эксперименте пчела, опускаясь на чашечки с сахарным раствором, при­крытые картинками с изображением различных геометриче­ских форм, с трудом различает такие простые геометриче­ские формы, как треугольник и квадрат, но легко отыскива­ет сложные формы: пятиугольную и шестиугольную звезды или крестообразные формы. Эти исследования показывают, что фактором, позволяющим пчеле выделять соответствую­щие формы, является не их геометрическая простота, а их сходство с натуральными раздражителями — формой цветов.

Аналогичные результаты дали эксперименты с различением пчелой разных окрасок. Они показали, что пчела с трудом раз­личает чистые цвета и гораздо легче — смешанные (красно-желтый, желто-зеленый, зеленовато-голубой и т.д.), близкие к окраске реальных цветов. Все это показывает, что решающим фактором для выделения признаков, запускающих врожденные (инстинктивные) программы поведения, являются естествен­ные условия существования.

Исследования, проведенные зоологами и психологами, по­зволили убедиться еще в одной важнейшей особенности врож­денного инстинктивного поведения. Оказалось, что врожден­ные программы инстинктивного поведения целесообразны лишь в определенных, строго постоянных стандартных условиях. Сто­ит, однако, немного изменить эти условия, чтобы врожденные программы теряли целесообразность и «разумный» характер. Это положение можно проиллюстрировать следующими примера­ми. Известно, что у одной из пород ос сложилось очень целесо­образное поведение. Подлетая к норе, в которую она помещает свою добычу, она оставляет ее снаружи и, лишь убедившись, что нора пустая, втаскивает добычу и улетает.

Дело, однако, существенно меняется, когда в специальном эксперименте добычу, лежащую перед входом, сдвигают на не­сколько сантиметров, проделывая это в тот момент, когда оса влезает внутрь. В этом случае оса, обнаруживая добычу не на том месте, снова подтаскивает ее в исходное положение и опять входит в нору, которую она только что обследовала. Та­кое поведение осы может повторяться много раз подряд, и каж­дый раз, когда добыча перемещается на несколько сантимет­ров, оса механически повторяет обследование, уже потерявшее всякую целесообразность. Аналогичные наблюдения были про­ведены над пчелами (срезание дна на сотах). Все это показыва­ет, что врожденные «инстинктивные» программы поведения, преобладающие в деятельности насекомых, являются механи­ческими, косными, сохраняя свою кажущуюся «разумность» лишь в постоянных стандартных условиях, в соответствии с ко­торыми они были выработаны в процессе эволюции.

Как же происходит приспособление этих животных к посто­янно изменяющимся условиям среды? Как правило, они откла­дывают огромное число яичек, отличающееся большой избы­точностью. Лишь небольшое число особей, появившихся на свет, выживает, но и этого количества достаточно для сохранения вида.

Таким образом, программы инстинктивных действий не мо­гут предусмотреть большое число разнообразных раздражите­лей, тем самым ограничивая отражательные возможности жи­вотных. В данном случае отражение действительности имеет форму чувствительности к отдельным воздействующим свойст­вам или группе свойств, форму элементарного ощущения. Со­гласно предложению А. Н Леонтьева, эту стадию развития пси­хики называют стадией элементарной сенсорной психики, охва­тывающей длинный ряд видов животных.

Инстинктивное поведение, осуществляющееся по сложной наследственно упроченной программе, четко приспособлено к стандартным условиям видового опыта, но оказывается неприспособленным к изменившимся индивидуальным условиям. Поэтому достаточно немного изменить стандартные условия, чтобы инстинктивное поведение теряло свой целесообразный характер.

Источник: http://studepedia.org/index.php?post=87811&vol=1

Стадия элементарной сенсорной психики

стадия элементарной сенсорной психики стадия элементарной сенсорной психики

webkonspect.com — сайт, с элементами социальной сети, создан в помощь студентам в их непростой учебной жизни.

Здесь вы сможете создать свой конспект который поможет вам в учёбе.

Чем может быть полезен webkonspect.com:

Источник: http://webkonspect.com/?id=7571&labelid=76968&room=profile

Часть III. Эволюция психики.

Глава 1. Элементарная сенсорная психика.

Высший уровень развития элементарной сенсорной психики.

Высшего уровня элементарной сенсорной психики достигло большое число многоклеточных беспозвоночных. Однако, как отмечалось, часть низших многоклеточных беспозвоночных находится в основном на том же уровне психического развития, что и многие простейшие. Это относится прежде всего к большинству кишечнополостных и к низшим червям, а тем более к губкам, которые во многом еще напоминают колониальные формы одноклеточных (жгутиковых). Неподвижный, сидячий образ жизни взрослых губок привел даже к редукции их внешней активности, поведения (при полном отсутствии нервной системы и органов чувств). Но даже у самых примитивных представителей многоклеточных животных создались принципиально новые условия поведения в результате появления качественно новых структурных категорий — тканей, органов, систем органов. Это и обусловило возникновение специальной системы координации деятельности этих многоклеточных образований и усложнившегося взаимодействия организма со средой — нервной системы.

К низшим многоклеточным беспозвоночным относятся помимо уже упомянутых еще иглокожие, высшие (кольчатые) черви, отчасти моллюски и др.

Мы рассмотрим в дальнейшем в качестве примера кольчатых червей, у которых в полной мере выражены признаки поведения, характерные для высшего уровня элементарной сенсорной психики. К кольчатым червям относятся живущие в морях многощетинковые черви (полихеты), малощетинковые черви (наиболее известный представитель — дождевой червь) и пиявки. Характерным признаком строения кольчецов является внешняя и внутренняя метамерия: тело состоит из нескольких большей частью идентичных сегментов, каждый из которых содержит «комплект» внутренних органов, в частности пару симметрично расположенных ганглиев с нервными коммисурами. В результате нервная система кольчатых червей имеет вид «нервной лестницы».

Нервная система

Как известно, нервная система впервые появляется у низших многоклеточных беспозвоночных. Возникновение нервной системы — важнейшая веха в эволюции животного мира, и в этом отношении даже примитивные многоклеточные беспозвоночные качественно отличаются от простейших. Важным моментом здесь является уже резкое ускорение проводимости возбуждения в нервной ткани: упротоплазме скорость проведения возбуждения не превышает 1-2 микрон в секунду, но даже в наиболее примитивной нервной системе, состоящей из нервных клеток, она составляет 0,5 метра в секунду!

Нервная система существует у низших многоклеточных в весьма разнообразных формах: сетчатой (например, у гидры), кольцевой (медузы), радиальной (морские звезды) и билатеральной. Билатеральная форма представлена у низших (бескишечных) плоских червей и примитивных моллюсков (хитон) еще только сетью, располагающейся вблизи поверхности тела, но выделяются более мощным развитием несколько продольных тяжей. По мере своего прогрессивного развития нервная система погружается под мышечную ткань, продольные тяжи становятся более выраженными, особенно на брюшной стороне тела. Одновременно все большее значение приобретает передний конец тела, появляется голова (процесс цефализации), а вместе с ней и головной мозг — скопление и уплотнение нервных элементов в переднем конце. Наконец, у высших червей центральная нервная система уже вполне приобретает типичное строение «нервной лестницы», при котором головной мозг располагается над пищеварительным трактом и соединен двумя симметричными коммисурами («окологлоточное кольцо») с расположенными на брюшной стороне подглоточными ганглиями и далее с парными брюшными нервными стволами. Существенными элементами являются здесь ганглии, поэтому говорят и о ганглионарной нервной системе, или о «ганглионарной лестнице». У некоторых представителей данной группы животных (например, пиявок) нервные стволы сближаются настолько, что получается «нервная цепочка».

От ганглиев отходят мощные проводящие волокна, которые и составляют нервные стволы. В гигантских волокнах нервные импульсы проводятся значительно быстрее благодаря их большому диаметру и малому числу синаптических связей (мест соприкосновения аксонов одних нервных клеток с дендритами и клеточными телами других клеток). Что же касается головных ганглиев, т.е. мозга, то они больше развиты у более подвижных животных, обладающих и наиболее развитыми рецепторными системами.

Зарождение и эволюция нервной системы обусловлены необходимостью координации разнокачественных функциональных единиц многоклеточного организма, согласования процессов, происходящих в разных частях его при взаимодействии с внешней средой, обеспечения деятельности сложно устроенного организма как единой целостной системы. Только координирующий и организующий центр, каким является центральная нервная система, может обеспечить гибкость и изменчивость реакции организма в условиях многоклеточной организации.

Огромное значение имел в этом отношении и процесс цефализапии, т.е. обособления головного конца организма и сопряженного с ним появления головного мозга. Только при наличии головного мозга возможно подлинно централизованное «кодирование» поступающих с периферии сигналов и формирование целостных «программ» врожденного поведения, не говоря уже о высокой степени координации всей внешней активности животного.

Разумеется, уровень психического развития зависит не только от строения нервной системы. Так, например, близкие к кольчатым червям коловратки также обладают, как и те, билатеральной нервной системой и мозгом, а также специализированными сенсорными и моторными нервами. Однако, мало отличаясь от инфузории размером, внешним видом и образом жизни, коловратки очень напоминают последних также поведением и не обнаруживают более высоких психических способностей, чем инфузории. Это опять показывает, что ведущим для развития психической деятельности является не общее строение, а конкретные условия жизнедеятельности животного, характер его взаимоотношений и взаимодействий с окружающей средой. Одновременно этот пример еще раз демонстрирует, с какой осторожностью надо подходить к оценке «высших» и «низших» признаков при сравнении организмов, занимающих различное филогенетическое положение, в частности при сопоставлении простейших и многоклеточных беспозвоночных.

Кольчатые черви обитают в морях и пресноводных водоемах, но некоторые ведут и наземный образ жизни, передвигаясь ползком по субстрату или роясь в рыхлом грунте. Морские черви отчасти пассивно носятся течениями воды как составная часть планктона, но основная масса ведет придонный образ жизни в прибрежных зонах, где селится среди колоний других морских организмов или в расщелинах скал. Многие виды живут временно или постоянно в трубках, которые в первом случае периодически покидаются их обитателями, а затем вновь разыскиваются. Хищные виды отправляются из этих убежищ регулярно на «охоту». Трубки строятся из песчинок и других мелких частиц, которые скрепляются выделениями особых желез, чем достигается большая прочность построек. Неподвижно сидящие в трубках животные ловят свою добычу (мелкие организмы), подгоняя к себе и процеживая воду с помощью венчика щупалец, который высовывается из трубки, или же прогоняя сквозь нее поток воды (в этом случае трубка открыта на обоих концах).

В противоположность сидячим формам свободноживущие черви активно разыскивают свою пищу, передвигаясь по морскому дну: хищные виды нападают на других червей, моллюсков, ракообразных и иных сравнительно крупных животных, которых хватают челюстями и проглатывают; растительноядные отрывают челюстями куски водорослей; другие черви (их большинство) ползают и роются в придонном иле, проглатывают его вместе с органическими остатками или собирают с поверхности дна мелкие живые и мертвые организмы.

Малощетинковые черви ползают и роются в мягком грунте или придонном иле, некоторые виды способны плавать. Во влажных тропических лесах некоторые малощетинковые кольчецы вползают даже на деревья. Основная масса малощетинковых червей питается детритом, всасывая слизистый ил или прогрызаясь сквозь почву. Но существуют и виды, поедающие мелкие организмы с поверхности грунта, процеживающие воду или отгрызающие куски растений. Несколько видов ведут хищный образ жизни и захватывают мелких водных животных, резко открывая ротовое отверстие. В результате добыча всасывается с потоком воды.

Пиявки хорошо плавают, производя туловищем волнообразные движения, ползают, роют ходы в мягком грунте, некоторые передвигаются по суше. Помимо кровососущих существуют также пиявки, которые нападают на водных беспозвоночных и проглатывают их целиком. Наземные пиявки подстерегают свои жертвы на суше (млекопитающих и людей), в траве или на ветках деревьев и кустарников (во влажных тропических лесах). Эти пиявки могут довольно быстро двигаться. В передвижении наземных пиявок по субстрату большую роль играют присоски: животное вытягивает сперва туловище, затем присасывается к субстрату головной присоской, притягивает к ней задний конец туловища (с одновременным сокращением последнего), присасывается задней присоской и т.д.

Итак, двигательная активность кольчатых червей как при локомоции, так и при добывании пищи отличается большим многообразием и достаточной сложностью. Обеспечивается это сильно развитой мускулатурой, представленной прежде всего так называемым кожно-мышечным мешком. Он состоит из двух слоев: внешнего (подкожного), состоящего из кольцевых волокон, и внутреннего, состоящего из мощных продольных мышц. Последние простираются, несмотря на сегментацию, от переднего до заднего конца туловища. Ритмичные сокращения продольной и кольцевой мускулатуры кожно-мышечного мешка обеспечивают локомоцию: червь ползет, вытягивая и сокращая, расширяя и сужая отдельные части своего тела. Так, у дождевого червя вытягивается (и сужается) передняя часть тела, затем то же самое происходит последовательно со следующими сегментами. В результате по телу червя пробегают «волны» сокращений и расслаблений мускулатуры.

У кольчатых червей впервые в эволюции животного мира появляются подлинные парные конечности: кольчецы (помимо пиявок) носят на каждом сегменте по паре выростов, служащих органами передвижения (кроме головного конца, где они служат ротовыми органами) и получивших название параподий. Параподии снабжены специальными мышцами, двигающими их вперед или назад. Зачастую параподий имеют ветвистое строение. Каждая ветвь снабжена опорной щетинкой и, кроме того, венчиком из щетинок, имеющих у разных видов различную форму. От параподий отходят и щупальцевидные органы тактильной и химической чувствительности. Особенно длинными и многочисленными последние являются на головном конце, где на спинной стороне располагаются глаза (одна или две пары), а в ротовой полости или на особом (выпячиваемом) хоботке — челюсти. В захвате пищевых объектов могут участвовать и нитевидные щупальца на головном конце червя.

У ряда многошетинковых и всех малощетинковых червей параподии редуцированы (отсюда и название последних), остались лишь посегментно расположенные пучки щетинок. Так, у дождевого червя на каждом сегменте находится по четыре пары очень коротких, неразличимых невооруженным глазом щетинок, которые, однако, наподобие параподии служат для передвижения животного: являясь достаточно крепкими подвижными рычагами, они обеспечивают вместе с сокращениями кожно-мышечного мешка поступательное движение червя. С другой стороны, растопыривая свои щетинки и упираясь ими в грунт, дождевой червь настолько прочно фиксирует свое тело в земле, что практически невозможно вытащить его оттуда в неповрежденном виде. У некоторых других малощетинковых червей щетинки развиты значительно сильнее и представлены в большем количестве.

Органы чувств и сенсорные способности

Большой интерес для познания психической деятельности низших многоклеточных беспозвоночных представляет устройство и функционирование их органов чувств, представленных также весьма различными образованиями в соответствии с общим уровнем организации животного.

У наиболее низкоорганизованных представителей беспозвоночных органы чувств еще очень слабо дифференцированы как в морфологическом, так и в функциональном отношении. У этих животных трудно выделить органы осязания, химической чувствительности и т.д. Очевидно, первичные органы чувств вообще были плюромодальными, т.е. они обладали лишь общей, присущей всей живой материи чувствительностью, но в повышенной степени. Существование таких плюромодальных чувствительных клеток является весьма вероятной гипотезой, но в настоящее время такие рецепторные клетки, очевидно, уже не существуют. Специализация таких клеток по отдельным видам энергии привела к появлению унимодальных рецепторных образований, которые, как правило, реагируют лишь на один специфический вид энергии. Так появились термо-, хемо-, механо-, фото- и другие рецепторы.

Согласно этой гипотезе, все органы чувств многоклеточных животных развились из органов осязания — наименее дифференцированных рецепторов. В наиболее элементарных случаях осязательная функция присуща всем клеткам поверхности тела. Но уже у кишечнополостных появляются специальные осязательные клетки, которые, скапливаясь в определенных местах, образуют подлинные органы осязания. Это вытянутые цилиндрические или веретеновидные клетки, несущие на конце неподвижный чувствительный волосок или пучок волосков. Однако эти органы часто выполняют и обонятельную функцию. Особенностью низших многоклеточных беспозвоночных является то, что во многих (хотя и не во всех) случаях эти две рецепторные функции слиты и не поддаются морфологическому разграничению.

В этом нетрудно усмотреть остатки первичной плюромодальности.

С другой стороны, органы зрения относятся к наиболее сложным по строению и функционированию. Иногда органы чувств низшего порядка превращаются в органы чувств высшего порядка (например, у пиявок некоторые из органов осязания — так называемые «сенсиллы» — превращаются в глаза). Известный советский зоолог, специалист по сравнительной анатомии беспозвоночных B-А.Догель говорил в таких случаях о «повышении органа в ранге». Однако в процессе филогенеза, как отмечает Догель, нередко имело место и обратное явление; в других случаях какие-то рецепторы беспозвоночных исчезали, чтобы потом вновь появиться в несколько измененной форме. Это непостоянство и легкость перестройки привели к тому, что у близкородственных беспозвоночных однотипные рецепторы, в частности органы оптической чувствительности, подчас бывают совершенно различными по строению и функциям.

Если взять, к примеру, кишечнополостных, то гидра четко реагирует на свет, хотя специальных органов зрения у нее нет. Она воспринимает свет всей поверхностью тела. Положительный фототаксис гидры выражается в том, что животное производит в освещенной сфере круговые или маятникообразные колебательные движения и в конце концов занимает положение в сторону источника света или даже направляется (ползет) к нему. Свободноживущие же представители кишечнополостных — медузы — обладают уже специальными многоклеточными органами светочувствительности. В простейшем случае эти органы представлены так называемыми глазными пятнами, которые находятся среди обыкновенных эпителиальных клеток, и даже нечетко отграничены от них. Более дифференцированным рецептором является глазная ямка (рис. 32). Однако чаще у медуз встречаются уже настоящие глаза, причем наиболее сложно устроенные из них представляют собой погруженные под слоем эпителиальных клеток глазные пузыри приблизительно шарообразной формы. Эпителий над глазным пузырем утончен и представляет собой прозрачную роговицу. Дно и стенки пузыря состоят из двух типов клеток: ретинальных и пигментных, причем ретинальные клетки снабжены чувствительными палочками. В полости глазного пузыря находится стекловидное тело — студенистая масса, защищающая ретину от механических повреждений. Иногда встречаются даже хрусталик и радужка, и тогда налицо все основные компоненты глаза высших животных (нет, однако, глазодвигательных мышц и систем фокусировки).

Рис. 32. Развитие глаза беспозвоночных (на примере гидромедуз). Слева вверху — глазное пятно; слева внизу — глазная ямка; справа — глазной пузырь. 1 — зрительная клетка; 2 — пигментная клетка; 3 — зрительный нерв; 4 — эпителий; 5 — хрусталик; 6 — светочувствительные палочки; 7-стекловидное тело (по Бючли).

Учитывая, что глазное пятно является исходной формой вообще всех органов зрения, можно, следовательно, в ряду медуз проследить путь усложнения структуры от самого примитивного органа светочувствительности до сложного, высокодифференцированного глаза.

Очень разнообразны по своему строению и глаза червей, как и других низших многоклеточных беспозвоночных; в принципе к ним относится то же, что говорилось в отношении глаз медуз. В соответствии с многообразием движений кольчатых червей, разнообразием способов добывания пищи и других моментов жизнедеятельности находится и уровень развития сенсорной сферы этих животных. Это, правда, не означает, что у кольчецов имеются рецепторы для всех видов энергии, воздействующих на них, или даже что для всех форм чувствительности имеются специальные органы чувств. Так, например, у кольчатых червей встречаются сложно устроенные глаза, снабженные даже хрусталиками. Имеются весьма сложные глаза и у некоторых планарий и улиток. По их обладатели, насколько известно, неспособны к зрительному восприятию предметов. За исключением, может быть, некоторых улиток, у всех этих животных фотоскопические глаза, позволяющие отличать свет от тьмы и направление, откуда световые лучи падают на животное, а также перемещение светотеней в непосредственной близости от животного. Светочувствительность может при этом быть очень высокой, например, гребешок, двустворчатый моллюск с несколькими десятками глаз, закрывает створки раковины уже при уменьшении интенсивности освещения на 0,3%. (Для сравнения можно указать, что человек воспринимает уменьшение освещения лишь не менее чем на 1%).

Большой интерес представляют активно плавающие многощетинковые кольчатые черви из семейства Alciopidae, ведущие хищный образ жизни. У этих полихет глаз не только отличается исключительно сложным строением и величиной, но и снабжен аккомодационным устройством в виде специальных сократительных волокон, способных передвигать хрусталик и тем самым менять фокусное расстояние. Это единственный известный случай среди низших беспозвоночных: аккомодация глаза встречается только у головоногих моллюсков и позвоночных. Возможно, у этих червей в какой-то степени уже существует предметное зрение, что было бы исключением, подтверждающим общее правило. Это относится и к свободно плавающим хищным моллюскам Heteropoda, которые тоже обладают весьма сложно устроенными глазами с приспособлением, заменяющим аккомодацию.

Что же касается дождевого червя, то здесь обнаруживается чрезвычайно интересный факт: у него нет не только сложно устроенных, но и вообще никаких специальных органов светочувствительности. Вместе с тем ему свойствен четкий отрицательный фототаксис. Функцию светоощущения выполняют рассеянные в коже светочувствительные клетки. Это пример кожной светочувствительности низших многоклеточных беспозвоночных. Кожная светочувствительность наблюдается и у многих моллюсков, причем у двустворчатых это нередко единственная форма фоторецепции. Эти моллюски реагируют как на освещение, так и на затемнение чаще всего одинаковым образом — втягиванием выступающих из раковин частей тела или запиранием раковины. Многие улитки реагируют на внезапное затемнение сокращением «ноги», причем эта реакция сохраняется и после экстирпации глаз, что опять-таки указывает на наличие кожной светочувствительности.

Реакция дождевого червя на условия освещения состоит в том, что он уползает в зону большего затемнения. Если же внезапно уменьшить интенсивность освещения, то червь реагирует на это движениями бегства; в естественных условиях он вползает в почву. Такая же реакция следует за внезапным освещением. Если же осветить лишь определенный участок тела дождевого червя, то время этой реакции сокращается пропорционально размеру освещаемой площади поверхности тела — в наибольшей мере червь реагирует при освещении всей его поверхности. Следовательно, реакция определяется градиентом раздражения освещенных и неосвещенных частей тела. Аналогично реагируют на свет и другие кольчатые черви.

Кольчатые черви реагируют также на прикосновения, химические и термические раздражения, силу тяжести, электрические раздражения, течение воды, а наземные формы (дождевые черви) — на влажность среды. Однако принципиальных отличий от реакции на свет нет: все эти реакции находятся на одном уровне и характеризуются тем, что являются ответами на отдельные раздражители, на отдельные признаки, качества предметов, но не на сами предметы как таковые. Так, например, много- и малощетинковые черви проявляют четко выраженные таксисные реакции на тактильные раздражения. Преобладают отрицательные реакции, но в ряде случаев наблюдаются и положительные тигмотаксисы: прикосновения нервных сегментов животного к субстрату влекут за собой прижимание к нему всем телом, что имеет, конечно, большое значение при роющем образе жизни или жизни в трубках. Интересно, что у дождевого червя соответствующие рецепторные образования представлены лишь отдельными чувствительными клетками, разбросанными по всему телу, но более густо располагающимися на его переднем конце. У многощетинковых же червей органами осязания часто являются щупальца или щетинки.

Хорошо развита и химическая чувствительность, причем в большинстве случаев наблюдается отрицательный хемотаксис. При большой интенсивности химического воздействия черви всегда реагируют отрицательно. С другой стороны, дождевой червь, например, способен по химическим признакам выбирать разные виды листьев, что свидетельствует о специализации в сенсорной сфере. У ряда кольчецов обнаружены расположенные около ротового отверстия органы химической чувствительности в виде ямок. Особенно это относится к пларающим видам, у которых имеется пара таких ямок, выстланных мерцательным эпителием.

Как и на более низких уровнях эволюционного развития, пространственная ориентация совершается на высшем уровне элементарной сенсорной психики, преимущественно на основе примитивных таксисов. Но с усложнением жизнедеятельности организмов возрастают и требования к локализации биологически значимых компонентов среды по их биологически незначимым признакам. Возникает необходимость более сложного таксисного поведения, позволяющего животному достаточно четко и дифференцированно ощущать и реагировать. Именно этим и отличаются животные, находящиеся на рассматриваемом здесь уровне развития психики: благодаря симметричному расположению органов чувств у них обнаруживаются наряду с кинезами и элементарными таксисами и некоторые высшие формы таксисного поведения.

Немецкий ученый А.Кюн выделил следующие категории высших таксисов, которые, правда, вполне развиты лишь у высших животных: тропотаксисы — движение ориентируется по равнодействующей, образуемой в результате выравнивания интенсивности возбуждения в симметрично расположенных рецепторах; телотаксисы — выбор и фиксация одного источника раздражения и направление движения к этому источнику («цели»); менотаксисы — при несимметричном раздражении в симметрично расположенных рецепторах движение производится под углом к источнику раздражения. Менотаксисы играют ведущую роль в сохранении животным константного положения в пространстве.

Кроме того, у высших животных с развитой памятью встречается еще одна форма таксисов — мнемотаксисы, при которых основную роль играет индивидуальное запоминание ориентиров, что особенно важно для территориального поведения, о чем еще пойдет речь.

В поведении кольчецов тропо- и телотаксисы чаще всего проявляются совместно: если животное подвергнуть одновременному воздействию двух источников энергии (например, света) одинаковой силы, то при положительном таксисе оно будет первоначально двигаться по направлению равнодействующей, т.е. линии, ведущей к середине расстояния между источниками (тропотаксис), но затем, как правило, еще не дойдя до этой точки, оно повернет и направится к одному из источников энергии (телотаксис).

Наиболее четко тропо- и телотаксисы проявляются у активно двигающихся кольчатых червей, прежде всего у хищников. Последние не только обнаруживают присутствие жертвы по исходящим от нее физическим и химическим стимулам, но и направляются к ней, ориентируясь на основе таких таксисов. Наземные пиявки, например, способны точно локализовать местонахождение жертвы и с удивительной быстротой направляются к ней, ориентируясь по сотрясению субстрата, а затем, на более близком расстоянии, и по исходящему от жертвы (крупных млекопитающих) теплу и запаху. В результате хищник обнаруживает ее по соответствующим градиентам с помощью сочетания положительных вибрационных, термических и химических телотаксисов.

При менотаксисах животное, как говорилось, двигается под углом к линии воздействия, исходящей от источника энергии. Типичный пример — ориентация мигрирующих животных по солнечному (или другому астрономическому) «компасу», что, конечно, особенно характерно для перелетных птиц. У низших многоклеточных беспозвоночных менотаксисы обнаружены у некоторых улиток. Если этих животных поместить на освещаемый сбоку и медленно вращающийся диск, то они, двигаясь против направления вращения, придерживаются определенного угла по отношению к источнику света. В этих случаях, следовательно, можно уже говорить об ориентации животного по световому компасу, которая играет исключительную роль в жизни высших животных.

Зачатки высших форм поведения

Многощетинковые кольчатые черви относятся к наиболее развитым в психическом отношении низшим беспозвоночным. Их поведение отличается подчас большой сложностью и представляет особый интерес в том смысле, что содержит ряд элементов психической деятельности, присущей более высокоорганизованным животным. В отличие от основной массы низших беспозвоночных у полихет наблюдаются некоторые существенные усложнения видотипичного поведения, отчасти уже выходящие за рамки типичной элементарной сенсорной психики.

Так, в некоторых случаях у этих морских червей встречаются действия, которые уже можно назвать конструктивными, поскольку животные активно создают сооружения из отдельных посторонних частиц, скрепляя их в единое целое. Речь идет о постройке уже упомянутых «домиков» — трубок из отдельных частичек, которые собираются червями на морском дне и укрепляются с помощью специальных «рабочих» органов — преобразованных передних параподий.

Сам процесс сооружения трубки является сложной деятельностью, состоящей из нескольких фаз, адекватно видоизменяющихся в зависимости от таких внешних факторов, как характер грунта и течения, рельеф дна, количество и состав опускающихся на дно частиц, скорость их оседания и т.д. Строительным материалом служат разного рода мелкий обломочный материал (например, кусочки раковин), песчинки, частицы растений и т.п., которые скрепляются специальными выделениями особого «цементирующего органа». Пригодные для употребления частицы выбираются животным, причем в зависимости от его возраста; молодые особи используют лишь мелкие гранулы, более старые — более крупные. Все частицы собираются и прикрепляются друг к другу уже упомянутыми специализированными щупальцами. Полихета Aulophorus carteri, например, строит трубки из спор водных растений, которые она собирает и прикрепляет друг к другу вокруг себя подобно тому, как строится труба из кирпичей (рис.33).

Рис. 33. Постройка многощетинковым червем трубки из спор водных растений (по Грассэ).

Не меньший интерес представляют впервые намечающиеся у многощетинковых червей проявления брачного поведения и агрессивности, а вместе с ними и элементов общения. Конечно, подлинные агрессивность и брачное поведение характеризуются ритуализацией, которая появляется только у головоногих моллюсков и членистоногих, т.е. на низшем уровне перцептивной психики. Все же у представителей рода Nereis удалось наблюдать борьбу между двумя червями. У Nereis pelagica такая борьба может начаться (но не обязательно), если одна особь пытается проникнуть в «домик» другой особи. Иногда вторгшаяся особь кусает владельца «домика» в задний конец тела, и тогда «хозяин» покидает трубку или же, перевернувшись, вступает в борьбу с пришельцем. В других случаях, когда животные встречаются в трубке на полпути, головой к голове, борьба вспыхивает немедленно, и черви борются, расположившись брюшными сторонами и головами друг к другу. Однако при всех обстоятельствах животные не наносят друг другу повреждения. В более ожесточенной, «непримиримой» форме борьба происходит у Nereis caudata, причем не только из-за обладания «домиком». «Драки» описаны английским исследователем поведения морских кольчатых червей С.М.Эвансом и его сотрудниками также у полихеты Harmothoe imbricata. У этого вида борьба может возникнуть при случайной встрече двух особей, особенно же агрессивность проявляется в сфере воспроизведения, при образовании пар: самец, уцепившийся за самку, становится чрезвычайно агрессивным по отношению к другим самцам (но не самкам). Никогда, однако, борьба не сопровождается у полихет подачей каких-либо сигналов или другими проявлениями ритуализации поведения.

Виноградные улитки же выполняют сложные «брачные игры», длящиеся иногда по нескольку часов, во время которых партнеры принимают по отношению друг к другу различные позы, колют друг друга известковыми спикулами («любовными стрелами») и т.д. Только после такой взаимной стимуляции начинается собственно спаривание (перенос сперматофора). У некоторых полихет, например у Platynereis dumerilii, в последние годы также были описаны брачные «танцы», однако, очевидно, еще рано делать выводы о их конкретном значении и о том, имеют ли они какое-то отношение к ритуализованному поведению. Но во всех этих случаях, несомненно, обнаруживаются некие зачатки, предваряющие значительно более сложные формы поведения высших позвоночных.

Пластичность поведения

Поведение кольчатых червей, как и других низших беспозвоночных, характеризуется малой пластичностью, консервативностью. Господствуют врожденные стереотипы («врожденные программы поведения»). Индивидуальный опыт, научение, играет в жизни этих животных еще небольшую роль. Ассоциативные связи формируются у них с трудом и лишь в ограниченных пределах. Результаты научения сохраняются недолго. У всех кольчатых червей встречается наиболее простая форма научения — привыкание, с которым мы уже встречались у простейших, у которых она является главной, если не единственной формой модификации врожденного, видотипичного поведения. У низших многоклеточных животных врожденные реакции на определенные раздражения также прекращаются после многократного повторения, если не последует адекватного подкрепления этих реакций. Так, например, дождевые черви перестают реагировать на повторное затенение, если оно остается без последствий.

Отмечается привыкание и в сфере пищевого поведения: если многощетинкового червя повторно «кормить» комочками бумаги, смоченными соком его обычной жертвы, он перестает их принимать. Если попеременно с такими комочками давать ему подлинные кусочки пищи, то он в конце концов научается различать их и будет отвергать лишь несъедобную бумагу. Подобные опыты ставились и на кишечнополостных (на полипах, находящихся, как мы уже знаем, на более низком уровне элементарной сенсорной психики). При этом полипы вели себя так же, как морские черви: уже после нескольких (до 5) опытов они отбрасывали несъедобные объекты еще до того, как подносили их к ротовому отверстию. Интересно, что нетренированные щупальца этого не делали, даже находясь рядом с тренированными.

Эти эксперименты интересны тем, что показывают способность низших беспозвоночных отличить по побочным физическим качествам съедобное от несъедобного (по вкусу предлагавшиеся объекты были одинаковыми), что подтверждает наличие истинного психического отражения уже на этом, низшем, уровне филогенетического развития. Ведь здесь производится опосредствованное действие, отличающееся тем, что свойство (или сочетание нескольких свойств), которым животное руководствуется при оценке пригодности объекта к пищевому употреблению, выступает как подлинный сигнал, а чувствительность червя или полипа играет роль посредника между организмом и компонентом среды, от которого непосредственно зависит существование животного.

Более сложное научение путем «проб и ошибок» и формирования новой индивидуальной двигательной реакции можно в элементарной форме обнаружить, начиная уже с плоских червей. Так, планарии, встречая на своем пути полоску наждачной бумаги, сперва останавливаются, но затем все же переползают через нее. Если же сочетать соприкосновение червя с наждачной бумагой с его сотрясением, то планарии перестают переползать через нее и тогда, когда не производится сотрясения. Правда, здесь, очевидно, еще нет подлинной ассоциации между двумя раздражителями (шероховатость и сотрясение); скорее всего, происходит суммация первоначально не очень сильного отрицательного раздражения (шероховатость) с дополнительным отрицательным раздражением (сотрясение) и что, вероятно, влечет за собой общее повышение возбудимости животного.

Все же можно выработать уже у планарии и более сложные реакции, когда один из раздражителей является биологически «нейтральным». В таких случаях можно говорить, очевидно, уже об элементарных процессах подлинного ассоциативного научения. Так, например, Л.Г.Воронин и Н.А.Тушмалова сумели выработать у планарии и кольчатых червей оборонительные и пищевые условные рефлексы. При этом были получены и данные, свидетельствующие об усложнении форм временных связей. Если по поводу плоских червей можно говорить лишь о примитивных неустойчивых условных рефлексах, то у многощетинковых червей обнаруживаются уже стабильные самовосстанавливающиеся после угасания условные рефлексы. Эти различия соответствуют глубоким морфологическим различиям в строении нервной системы этих групп животных и свидетельствуют о существенном прогрессе психической активности у полихет.

Пластичность поведения дождевых червей очень убедительно была показана еще в 1912 г. известным американским зоопсихологом Р.Иерксом. В проведенных им опытах черви должны были в Т-образном лабиринте выбирать определенную сторону, где находилось «гнездо» (в противоположной стороне червь получал электрический удар). Чтобы этому научить червей, потребовалось 120- 180 опытов. (Улитки осваивают такую задачу после 60 опытов и запоминают верное решение в течение 30 дней.) Впоследствии аналогичные опыты с дождевыми червями ставились Л.Геком, И.С.Робинсоном, Р.И.Войтусяком (рис. 34) и другими исследователями. Удавалось также переучивать червей, поменяв «гнездо» и электроды местами. Характерно, что результат научения не меняется и после удаления передних сегментов. Более того, даже лишенный с самого начала этих сегментов, червь оказывается способным научиться правильно ориентироваться в лабиринте.

Подобные факты побудили в свое время В.А. Вагнера говорить о «сегментарной психологии» кольчатых червей и других «членистых», имея при этом в виду, что ганглии каждого сегмента в большой степени обеспечивают автономное выполнение элементарных психических функций. Обезглавленные кольчецы, писал Вагнер, «не теряют способности к спонтанным движениям, за исключением тех лишь, которые стоят в прямой зависимости и связи с органами чувств головы. Обезглавленные черви удерживают свои инстинктивные действия, даже те, в которых голова принимает прямое участие». 52

52 Вагнер В.А. Сегментарная психология. Новые идеи в биологии. Сборник № 6. Биопсихология. Спб., 1914. С. 123.

Рис. 34. Научение у дождевого червя (опыты Войтусяка).

Все это свидетельствует о том, что на уровне даже высших червей цефализация еще не достигла такого развития, чтобы оказать решающее влияние на все поведенческие акты животного. Все же общая направляющая роль головного мозга достаточно велика уже и на этом уровне. Это проявляется, например, в том, что если разрезать пополам дождевого червя, передняя половина будет закапываться в почву, производя вполне координированные движения, задняя же будет лишь беспорядочно извиваться.

Еще лучше, чем у малощетинковых червей, как уже отмечалось, вырабатываются ассоциативные связи у полихет. В опытах удавалось, например, переделать отрицательную реакцию на освещение в положительную путем сочетания освещения с подкармливанием. В итоге черви стали при освещении выползать из своих домиков и без пищевого подкрепления. Время реакции (между световым раздражением и ответным движением) уменьшилось при этом с 28,9 до 3,5 секунды (опыты М.Купленда).

Обстоятельно изучал способность к научению полихет С.М.Эванс. Применяя наказания электрическим током, этот исследователь довольно легко выработал у подопытных животных отрицательную двигательную реакцию (отказ от вползания в узкий темный коридор). В других опытах червям приходилось проползать Т-образный лабиринт. При правильном повороте они могли в течение 5 минут пребывать в затемненной камере. Особенно хорошо обучались полихеты Nereis virens, которым понадобилось менее 100 сочетаний для почти безошибочного решения задачи и ее прочного запоминания; спустя 48 часов они безошибочно воспроизводили правильный путь через лабиринт (рис. 35).

Рис. 35. Научение у Nereis virens (опытЭванса). Вверху даны схемы Т-образных лабиринтов, в которых производились опыты. Внизу — кривая научения (по оси ординат-число ошибок, по оси абсцисс — число опытов).

Общая характеристика высшего уровня элементарной сенсорной психики

Как уже отмечалось, наиболее низкоорганизованные формы многоклеточных беспозвоночных стоят на том же уровне психического развития, что и высшие представители простейших. Но то, что здесь не обнаруживаются существенные различия в поведении, несмотря на глубокие различия в строении, не должно нас удивлять, ибо, как уже говорилось, простейшие олицетворяют собой совершенно особую, рано отклонившуюся филогенетическую ветвь, которая до известных пределов развивалась параллельно ветви низших многоклеточных животных.

Что же касается поведения кольчатых червей, то оно вполне отвечает стадии элементарной сенсорной психики, ибо слагается из движений, ориентированных лишь по отдельным свойствам предметов и явлений (или их сочетаниям), причем это те свойства, которые, по Леонтьеву, оповещают о появлении жизненно важных условий среды, от которых зависит осуществление основных биологических функций животных. Эта ориентация осуществляется, таким образом, на основе одних лишь ощущений. Перцепция, способность к предметному восприятию, еще отсутствует. Не исключено, правда, что у некоторых наземных улиток, как и у упомянутых выше свободно плавающих хищных моллюсков и полихет, уже намечаются зачатки этой способности. Так, виноградная улитка обходит преграду еще до прикосновения к ней, ползет вдоль нее, но только если преграда не слишком велика; если же изображение преграды занимает всю сетчатку, улитка наталкивается на нее. Не реагирует она и на слишком мелкие предметы.

В поведении кольчатых червей еще преобладает избегание неблагоприятных внешних условий, как это имеет место у простейших. Но все же активный поиск положительных раздражителей занимает в поведении кольчецов уже заметное место, и это весьма характерно для высшего уровня элементарной сенсорной психики. Так же как и у простейших, в жизни кольчатых червей и других низших многоклеточных беспозвоночных большую роль играют кинезы и элементарные таксисы. Но наряду с ними здесь уже встречаются зачатки сложных форм инстинктивного поведения (особенно у некоторых многощетинковых червей, пиявок, а также улиток) и впервые появляются высшие таксисы, обеспечивающие значительно более точную и экономную ориентацию животного в пространстве, а тем самым и более полноценное использование пищевых ресурсов в окружающей среде. В результате возникли предпосылки для поднятия всей жизнедеятельности на более высокую ступень, что и имело место на стадии перцептивной психики.

Как было показано, у высших представителей рассматриваемой группы беспозвоночных впервые появляются зачатки конструктивной деятельности, агрессивного поведения, общения. Здесь опять подтверждается правило, что высшие формы поведения зарождаются уже на низших стадиях развития психической деятельности.

Давая общую оценку поведению низших многоклеточных беспозвоночных, следует отметить, что, очевидно, первично главная функция еще примитивной нервной системы состояла в координации внутренних процессов жизнедеятельности в связи со все большей специализацией клеток и новых образований — тканей, из которых строятся все органы и системы многоклеточного организма. «Внешние» же функции нервной системы определяются степенью внешней активности, которая у этих животных находится на еще невысоком уровне, зачастую не более высоком, чем у высших представителей простейших. Вместе с тем строение и функции рецепторов, как и «внешняя» деятельность нервной системы, значительно усложняются у животных, ведущих более активный образ жизни. Особенно это относится к свободноживущим, активно передвигающимся формам.

Говоря об обширной и пестрой по составу группе низших беспозвоночных, нужно, конечно, учесть, что поведение этих животных еще очень слабо изучено. Мы, например, еще почти ничего не знаем об онтогенезе поведения этих животных, о том, как формируется и развивается их поведение, да и совершенствуется ли оно вообще в процессе индивидуального развития, на что уже указывалось в части, посвященной онтогенезу поведения. Вполне возможно (если, конечно, исключить метаморфозные преобразования, личиночное поведение у низших многоклеточных и т.п.), что подобное онтогенетическое совершенствование у обсуждаемых животных не является существенным или даже вообще не происходит, ибо жесткость врожденных программ поведения, исключительная стереотипия форм реагирования являются у этих животных определяющей чертой всего их поведения.

Источник: http://bookap.info/okolopsy/fabri2/gl36.shtm

Стадия элементарной сенсорной психики

ОЧЕРК РАЗВИТИЯ ПСИХИКИ

Развитие психики животных

Стадия элементарной сенсорной психики

Возникновение чувствительных живых орга­низмов связано с усложнением их жизнедеятельности. Это усложнение заключается втом, что выделяются про­цессы внешней деятельности, опосредствующие отноше­ния организмов к тем свойствам среды, от которых зависит сохранение и развитие их жизни. Выделение этих процессов обусловлено появлением раздражимости к воздействиям, которые выполняют сигнальную функ­цию. Так возникает способность отражения организмами воздействий окружающей действительности в их объек­тивных связях и отношениях — психическое отражение.

Развитие этих форм психического отражения совер­шается вместе с усложнением строения организмов и в зависимости от развития той деятельности, вместе с ко­торой они возникают. Поэтому их научный анализ невоз­можен иначе как на основе рассмотрения самой деятель­ности животных.

Что же представляет собой та деятельность живот­ных, с которой связана простейшая форма их психики? Ее главная особенность заключается в том, что она по­буждается тем или иным воздействующим на животное свойством, на которое она вместе с тем направлена, но которое не совпадает с теми свойствами, от которых не­посредственно зависит жизнь данного животного. Она определяется, следовательно, не самими но себе данными воздействующими свойствами среды, но этими свойства­ми в их отношении с другими свойствами.

Так, например, известно, что, как только насекомое попадает в паутину, паук немедленно направляется к нему и начинает опутывать его своей нитью. Что же именно вызывает эту деятельность паука и на что она направлена? Для того чтобы решить это, нужно исклю­чить один за другим различные моменты, которые, воз­можно, воздействуют на паука. Путем такого рода опы­тов удалось установить, что то, что побуждает деятель­ность паука и па что она направлена, есть вибрация, которую производят крылья насекомого, передающаяся по паутине. Как только вибрация крыльев насекомого прекращается, паук перестает двигаться к своей жертве. Достаточно, однако, чтобы крылья насекомого снова на­чали вибрировать, как паук .вновь устремляется к нему и вновь опутывает его паутиной. Действительно ли, однако, вибрация и есть то, что вызывает деятель­ность паука, и вместе с тем то, на что она направлена? Это показывает следующий опыт. К паутине прика­саются звучащим камертоном. В ответ на это паук устремляется к камертону, взбирается на его ножки, опу­тывает их паутиной и пытается нанести удар своими конечностями—челюстями (Е. Рабо). Значит, дело здесь именно в факте вибрации: ведь, кроме свойства вибриро­вать, между камертоном и насекомым, попавшим в пау­тину, нет ничего общего.

Почему же деятельность паука связана именно с воз­действующей на него вибрацией, которая сама по себе, конечно, не играет никакой роли в его жизни? Потому, что в нормальных условиях воздействие вибрации нахо­дится в определенной связи, в определенном устойчивом отношении к питательному веществу насекомого, попа­дающего в паутину. Мы будем называть такое отноше­ние воздействующего свойства к удовлетворению одной из его биологических потребностей биологическим смыс­лом данного воздействия. Пользуясь этим термином, мы можем сказать, что деятельность паука направлена на вибрирующее тело в силу того, что вибрация приобрела для него в ходе видового развития смысл пищи.

Биологический смысл тех или иных воздействий не является постоянным для животного, но, наоборот, изме­няется и развивается в процессе его деятельности в зави­симости от объективных связей соответствующих свойств среды.

Если, например, проголодавшуюся жабу сначала си­стематически кормить червями, а потом положить перед пей обыкновенную спичку и круглый кусочек мха, то жаба набрасывается на спичку, имеющую, как и черви, удлиненную форму, но не трогает мха: удлиненная фор­ма приобрела для нее биологический смысл нищи. Если, наоборот, мы предварительно будем кормить жабу пау­ками, то она, не реагируя на спичку, будет набрасывать­ся на кусочек мха, сходный по форме с пауком: смысл пищи теперь приобрела для нее круглая форма пред­метов.

Необходимо отметить, что смысловые связи, возни­кающие в деятельности животных, представляют собой условные связи, имеющие особый и, можно даже сказать, чрезвычайный характер. Они резко отличаются от тех условных связей, которые образуют механизм самого по­ведения, т. е. связей, с помощью которых поведение осу­ществляется.

Когда животное, видя пищу, движется к ней, т. е. ко­гда мы имеем дело со смысловой связью «вид пищи — пища», то эта связь возникает и изменяется совсем ина­че, чем те связи, которые возникают у него, например, в процессе образования навыка обхода преграды, стоящей на его пути (связь «преграда — обходное движение»).

Связи первого рода образуются, как показывают ис­следования, весьма быстро, «с ходу», и столь же быстро разрушаются; для этого достаточно одного-двух соче­таний.

Связи второго рода возникают и угасают, наоборот, медленно, постепенно. Например, цыплята начинают из­бирательно клевать рубленый яичный желток уже после однократного успеха; двухдневному цыпленку достаточно одной-двух попыток .клюнуть вместо желтка кусочек горькой апельсиновой корки, чтобы его пищевое поведе­ние на желток угасло (Морган и др.). С другой стороны, выработка у цыплят вполне удовлетворительного приспо­собления клевательных движений к внешним условиям, в которых им дается пища, требует многих десятков проб.

Изучая формирование навыков у жаб, Бойтендейк (1930) в одной из серий своих экспериментов давал этим животным таких насекомых, вещество которых вызывало у них резко отрицательную биологическую реакцию. До-

статочно было одного-единственного опыта, чтобы жаба в течение многих часов после этого отказывалась от по­пыток съесть такое же или даже другое насекомое, напо­минающее его своим видом. В других экспериментах он отгораживал от жабы добычу (дождевого червя) стек­лом; при таких условиях, несмотря на то что она всякий раз наталкивалась на стекло, жаба, наоборот, обнаружи­вала большое упорство; она делала множество попыток, прежде чем ее реакция угасала. Даже усиление момен­та «наказания» (отрицательного подкрепления) не вызы­вает в таких случаях прекращения движений. В опытах Аббо лягушка продолжала набрасываться на добычу, окруженную иглами, в продолжение 72 часов, пока кожа ее верхней челюсти не была серьезно изранена. Биологи­ческое значение различия в скорости образования связей того и другого рода совершенно понятно, если принять во внимание условия жизни вида. «Если, — говорит Бой­тендейк, — жаба во время своей вечерней охоты прибли­зится к муравейнику и схватит ядовитого муравья, то быстрое образование связи предохранит ее от поглоще­ния других таких же насекомых, вредных благодаря кис­лоте, которой они обладают. Наоборот, когда жаба пы­тается схватить дождевого червя, но это ей не удается, то повторение попыток в обычных условиях может по­мочь ей все же завладеть пищей» 1 .

Другая черта смысловых связей — это как бы «дву­сторонний» их характер, который выражается в том, что в результате образования такой связи не только воздей­ствие данного раздражителя начинает вызывать опреде­ленную реакцию, определенное поведение, но и соответ­ствующая потребность теперь как бы «узнает себя» в данном предмете-раздражителе, конкретизируется в нем и вызывает активное поисковое поведение по отноше­нию к нему.

Своеобразие этих смысловых связей подчеркивалось уже Ч. Дарвином, который цитирует, например, следую­щие наблюдения: «Гораздо легче искусственно вскор­мить теленка или ребенка в том случае, если он никогда не получал материнской груди, чем тогда, если он хоть раз получил ее. Личинки, «питавшиеся некоторое время каким-либо растением, скорее умрут, чем станут есть

1 F. Buitendiyk. Vue sur la psychologie animal. Paris, 1930

другое [растение], которое было бы вполне приемлемым для них, если бы они привыкли питаться им с самого начала» 2 .

В классических работах И. П. Павлова и его сотруд­ников также было показано образование этих «быстрых» смысловых связей (в ранней работе И. С. Цитовича, а затем в опытах И. О. Нарбутовича и др.), хотя их особая роль в поведении и не была специально подчеркнута.

Отражение животными среды находится в единстве с их деятельностью. Это значит, что, хотя существует различие между ними, они вместе с тем неотделимы друг от друга. Это значит, далее, что существуют взаимопере­ходы между ними. Эти взаимопереходы заключаются в том, что, с одной стороны, всякое отражение формирует­ся в процессе деятельности животного; таким образом, то, будет ли отражаться и насколько точно будет отра­жаться в ощущениях животных воздействующее на него свойство предмета, определяется тем, связано ли реаль­но животное в процессе приспособления к среде, в своей деятельности с данным предметом и как именно оно с ним связано. С другой стороны, всякая деятельность жи­вотного, опосредствованная ощущаемыми им воздей­ствиями, совершается в соответствии с тем, как отра­жается данное воздействие в ощущениях животного. Понятно, что основным в этом сложном единстве отра­жения и деятельности является деятельность животного, практически связывающая его с объективной действи­тельностью; вторичным, производным оказывается пси­хическое отражение воздействующих свойств этой дей­ствительности.

Деятельность животных на самой ранней, первой ста­дии развития психики характеризуется тем, что она отве­чает тому или иному отдельному воздействующему свой­ству (или совокупности отдельных свойств) в силу суще­ственной связи данного свойства с теми воздействиями, от которых зависит осуществление основных биологиче­ских функций животных. Соответственно отражение дей­ствительности, связанное с таким строением деятельно­сти, имеет форму чувствительности к отдельным воздей­ствующим свойствам (или совокупности свойств), форму элементарного ощущения. Эту стадию в развитии пси-

2 Ч. Дарвин. Соч., т. 3. М,— Л., 1939, стр. 715.

хики мы будем называть стадией элементарной сенсор­ной психики. Стадия элементарной сенсорной психики охватывает длинный ряд животных. Возможно, что эле­ментарной чувствительностью обладают некоторые выс­шие инфузории.

Еще гораздо более уверенно мы можем утверждать это в отношении таких животных, как некоторые черви, ракообразные, насекомые, и, разумеется, в отношении всех позвоночных животных.

У червей изменчивость поведения в связи с устанав­ливающимися новыми связями была показана многими исследователями. Например, как показали опыты Копеледа и Броуна (1934), кольчатый червь или вовсе не реа­гирует на прикосновение к нему стеклянной палочкой, или реагирует отрицательно. Если, однако, прикоснове­ние палочкой связать с кормлением, то реакция этого червя меняется: теперь прикосновение вызывает у него положительно движение к пище 3 .

У ракообразных изменения этого рода могут приобре­тать более сложный характер. Например, если слегка механически раздражать абдоменальную часть рака-от­шельника, когда он находится в раковине, то, как пока­зали опыты Тен-Кате-Кациева (1934), это вызывает у него некоторое движение. Если же раздражение продол­жается, то животное покидает раковину и удаляется 4 .

Сам по себе этот факт мало интересен, интересно дальнейшее изменение поведения рака. Оказывается, что если систематически повторять эксперименты, то поведе­ние животного становится иным. Теперь животное уже при первом прикосновении вынимает абдомен из рако­вины, но никуда не отходит от нее и почти тотчас же занимает прежнее положение. Прикосновение приобрело для него теперь совсем другой смысл — оно стало сигна­лом к выниманию абдомена из раковины.

Понятно, что материальную основу развития деятель­ности и чувствительности животных составляет развитие их анатомической организации. Тот общий путь измене­ний организмов, с которыми связано развитие в пределах

3 M. Copelad, F. Brown. Modification of Behavior im Neries Virens. «The Biological Bulletin», LXVII, 1934, № 3

4 B. Ten Cate Kazejewa. Quelques observations sur les Bernard l`Ermit. «Archives Neerlandaise de Physiologie de l`Homme et des Animaux», XIX, 1934, № 4

стадии элементарной сенсорной психики, заключается, с одной стороны, в том, что органы чувствительности жи­вотных, стоящих на этой стадии развития, все более диф­ференцируются и их число увеличивается; соответствен­но дифференцируются и их ощущения. Например, у низ-

ших животных клеточки, возбудимые по отношению к свету, рассеяны по всей поверхности тела так, что эти животные могут обладать лишь весьма диффузной све-

Затем впервые у червей светочувствительные клетки стягиваются к головному концу тела (рис. 14, Л) и, концентрируясь, приобрета­ют форму пластинок (В); эти органы дают возмож­ность уже достаточно точ­ной ориентации в направле­нии к свету. Наконец, на еще более высокой ступени развития (моллюски) в ре­зультате выгибания этих пластинок возникает внут­ренняя сферическая свето­чувствительная полость, действующая как «камера-люцида» (С), которая позволяет воспринимать движения предметов.

С другой стороны, развиваются и органы движения, органы внешней деятельности животных. Их развитие происходит особенно заметно в связи с двумя следующи

ми главными изменениями: с одной стороны, в связи с переходом к жизни в условиях наземной среды, а с дру­гой стороны, у гидробионтов (животных, живущих в вод­ной среде) в связи с переходом к активному преследова­нию добычи.

Вместе с развитием органов чувствительности и орга­нов движения развивается также и орган связи и коор­динации процессов — нервная система.

Первоначально нервная система представляет собой простую сеть, волокна которой, идущие в различных на­правлениях, соединяют заложенные на поверхности чувствительные клетки непосредственно с сократительной тканью животного. Этот тип нервной системы у совре­менных видов не представлен. У медуз нервная сеть, идущая от чувствительных клеток, связана с мышечной тканью уже через посредство двигательных нервных клеток.

По такой сетевидной нервной системе возбуждение передается диффузно, образующие ее нервные волокна обладают двусторонней проводимостью, тормозные про­цессы, видимо, отсутствуют. Дальнейший шаг в развитии

нервной системы выражается в выделении нейронов, об­разующих центральные ганглии (нервные узлы). По од­ной линии эволюции (у иглокожих животных) нервные ганглии образуют окологлоточное кольцо с отходящими от него нервными стволами. Это уже такой нервный центр, который позволяет осуществляться относительно очень сложно согласованными движениями, как, напри­мер, движения открывания морскими звездами дву­створчатых раковин. По двум другим большим линиям эволюции (от первичных червей к ракообразным и пау­кам, от первичных червей — к насекомым) происходит образование более массивного переднего (головного) ганглия, который подчиняет себе работу нижележащих нервных ганглиев (рис. 15—17).

Возникновение этого типа нервной системы обуслов­лено выделением наряду с другими органами чувств ве­дущего органа, который становится, таким образом, главным органом, опосредствующим жизнедеятельность организма.

Эволюция такой узловой нервной системы идет в на­правлении все большей ее дифференциации, что связано с сегментированием тела животного.

Изменение деятельности внутри этой стадии развития заключается во все большем ее усложнении, происходя­щем вместе с развитием органов восприятия, действия и нервной системы животных. Однако как общий тип строения деятельности, так и общий тип отражения сре­ды на всем протяжении этой стадии резко не меняются. Деятельность побуждается и регулируется отражением ряда отдельных свойств; восприятие действительности никогда, следовательно, не является восприятием целост­ных вещей. При этом у более низкоорганизованных жи­вотных (например, у червей) деятельность побуждается, всегда воздействием одного какого-нибудь свойства, так что, например, характерной особенностью поисков пищи является у них то, что они всегда производятся, как указывает В. Вагнер, «при посредстве какого-либо одно­го органа чувств, без содействия других органов чувств: осязания, реже обоняния и зрения, но всегда только од­ного из них» 5 .

5 В.А.Вагнер. Возникновение и развитие психических способностей вып. 8, 1928, стр. 4

Усложнение деятельности в пределах этого общего ее типа происходит в двух главных направлениях. Одно из них наиболее ярко выражено по линии эволюции, веду­щей от червей к насекомым и паукообразным. Оно про­является в том, что деятельность животных приобретает характер иногда весьма длинных цепей, состоящих из большого числа реакций, отвечающих на отдельные по­следовательные воздействия. Ярким примером такой дея­тельности может служить часто приводимое описание поведения личинки, называемой муравьиным львом.

Рис. 18. Воронка муравьиного льва ,(по Дофлейну)

стадия элементарной сенсорной психики

Муравьиный лев зарывается в песок, причем, как только он настолько углубится в него, что песчинки на­чинают касаться поверхности его головы, это вызывает у него толчкообразное отгибание головы вместе с передней частью туловища назад, отбрасывающее песчинки вверх. В результате в песке образуется воронка правильной формы, в центре которой выступает голова муравьиного льва. Когда в такую воронку попадает муравей, то он неизбежно скатывает вниз несколько песчинок. Падая на голову муравьиного льва, они вызывают у него опи­санные «метательные» рефлексы. Часть отбрасываемых песчинок попадает в муравья, который скатывается вме­сте с осыпающимся песком на дно воронки. Теперь, как

только муравей коснется челюстей муравьиного льва, они захлопываются, и жертва подвергается высасыва­нию (рис. 18, по Дофлейну, упрощено).

Механизмом такой деятельности является механизм элементарных рефлексов — врожденных, безусловных и условных.

Деятельность такого типа особенно характерна для насекомых, у которых она достигает наиболее высоких ступеней своего развития. Эта линия усложнения дея­тельности не является прогрессивной, не ведет к даль­нейшим качественным ее изменениям.

Другое направление, по которому идет усложнение деятельности и чувствительности, является, наоборот, прогрессивным. Оно приводит к изменению самого строе­ния деятельности, а на этой основе и к возникновению новой формы отражения внешней среды, характеризую­щей уже более высокую, вторую стадию в развитии пси­хики животных — стадию перцептивной (воспринимаю­щей) психики. Это прогрессивное направление усложне­ния деятельности связано с прогрессивной же линией биологической эволюции (от червеобразных к первич­ным хордовым и далее к позвоночным животным).

Усложнение деятельности и чувствительности живот­ных выражается здесь в том, что их поведение управ­ляется сочетанием многих одновременных воздействий. Примеры такого поведения можно взять из поведения рыб. Именно у этих животных с особенной отчетли­востью наблюдается резкое противоречие между уже от­носительно весьма сложным содержанием процессов дея­тельности и высоким развитием отдельных функций, с одной стороны, и еще примитивным общим ее строени­ем — с другой.

Обратимся снова к специальным опытам.

В отдельном аквариуме, в котором живут два моло­дых американских сомика, устанавливается поперечная перегородка, не доходящая до одной из его стенок, так что между ее концом и этой стенкой остается свободный проход. Перегородка — из белой марли, натянутой на рамку.

Когда рыбы (обычно державшиеся вместе) находи­лись в определенной, всегда одной и той же стороне ак­вариума, то с противоположной его стороны на дно опу­скали кусочек мяса. Побуждаемые распространяющимся запахом мяса, рыбы, скользя у самого дна, направлялись

прямо к нему. При этом они наталкивались на марлевую перегородку; приблизившись к ней на расстояние не­скольких миллиметров, они на мгновение останавлива­лись, как бы рассматривая ее, и далее плыли вдоль пере­городки, поворачивая то в одну, то в другую сторону, пока случайно не оказывались перед боковым проходом, через который они и проникали дальше, в ту часть аква­риума, где находилось мясо.

Наблюдаемая деятельность рыб протекает, таким об­разом, в связи с двумя основными воздействиями. Она побуждается запахом мяса и развертывается в направ­лении этого главного, доминирующего воздействия; с другой стороны, рыбы замечают (зрительно) преграду, в результате чего их движение в направлении распростра­няющегося запаха приобретает сложный, зигзагообраз­ный характер (рис. 19, А). Здесь нет, однако, простой цепи движений: сначала реакция на натянутую марлю, потом реакция на запах. Нет и простого сложения влия­ний обоих этих воздействий, вызывающего движение по равнодействующей. Это сложно координированная деятельность, в которой объективно можно выделить двоя­кое содержание. Во-первых, определенную направлен­ность деятельности, приводящую к соответствующему результату; это содержание возникает под влиянием запаха, имеющего для животного биологический смысл пищи. Во-вторых, собственно обходные движения; это содержание деятельности связано с определенным воз­действием (преграда), но данное воздействие отлично от воздействия запаха пищи; оно не может самостоятельно побудить деятельность животного; сама по себе марля не вызывает у рыб никакой реакции. Это второе воздей­ствие связано не с предметом, который побуждает дея­тельность и на который она направлена, но с теми усло­виями, в которых дан этот предмет. Таково объективное различие обоих этих воздействий и их объективное соот­ношение. Отражается ли, однако, это объективное их соотношение в деятельности исследуемых рыб? Высту­пает ли оно и для рыбы также раздельно: одно — как связанное с предметом, с тем, что побуждает деятель­ность; второе — как относящееся к условиям деятельно­сти, вообще — как другое?

Чтобы ответить на этот вопрос, продолжим экспери­мент.

По мере повторения опытов с кормлением рыб в усло­виях преграды на их пути к пище происходит как бы постепенное «обтаивание» лишних движений, так что в конце концов рыбы с самого начала направляются пря­мо к проходу между марлевой перегородкой и стенкой аквариума, а затем к пище (рис. 19, Б).

Перейдем теперь ко второй части эксперимента. Для этого, перед тем как кормить рыб, снимем перегородку. Хотя перегородка стояла достаточно близко от началь­ного пункта движения рыб, так что, несмотря на свое от­носительно мало совершенное зрение, они все же не могли не заметить ее отсутствия, рыбы тем не менее пол­ностью повторяют обходный путь, т. е. движутся так, как это требовалось бы, если перегородка была бы на месте (рис. 19, В). В дальнейшем путь рыб, конечно, выпрям­ляется, как это показано на рис. 19, Г, но это происходит лишь постепенно (А. В. Запорожец и И. Г. Диманштейн).

Итак, воздействие, определявшее обходное движение, прочно связывается у исследованных рыб с воздействием самой пищи, с ее запахом. Значит, оно уже с самого на­чала воспринималось рыбами наряду и слитно с запахом пищи, а не как входящее в другой «узел» взаимосвязан­ных свойств, т. е. свойство другой вещи.

Таким образом, в результате постепенного усложне­ния деятельности и чувствительности животных мы на­блюдаем возникновение развернутого несоответствия, противоречия в их поведении. В деятельности рыб (и, по-видимому, некоторых других позвоночных) уже выде­ляется такое содержание, которое объективно отвечает воздействующим условиям; для самого же животного это содержание связывается с теми воздействиями, по отно­шению к которым направлена их деятельность в целом. Иначе говоря, деятельность животных фактически опре­деляется воздействием уже со стороны отдельных вещей (пища, преграда), в то время как отражение действи­тельности остается у них отражением совокупности от­дельных ее свойств.

В ходе дальнейшей эволюции это несоответствие раз­решается путем изменения ведущей формы отражения и дальнейшей перестройки общего типа деятельности жи­вотных; совершается переход к новой, более высокой ста­дии развития отражения.

Однако, прежде чем начать рассмотрение этой новой стадии, мы должны будем остановиться еще на одном специальном вопросе, возникающем в связи с общей про­блемой изменчивости деятельности и чувствительности животных.

Это вопрос о так называемом инстинктивном, т. е врожденном, безусловнорефлекторном поведении и о по­ведении, изменяющемся под влиянием внешних условий существования животного, под влиянием его индивиду­ального опыта.

В психологии большим распространением пользова­лись взгляды, связывающие последовательные ступени в развитии психики с этими различными механизмами приспособления животных к среде. Так, низшую ступень в развитии психики представляет собой с этой точки зре­ния поведение, в основе которого лежат так называемые тропизмы, или инстинкты, животных; более же высокую ступень развития образует индивидуально изменяющееся поведение, поведение, строящееся на основе условных рефлексов.

Эти взгляды опираются на тот бесспорный факт, что, чем выше поднимаемся мы по лестнице биологического развития, тем все более совершенным делается приспо­собление животных к изменчивости среды, тем динамич­нее становится их деятельность, тем легче происходит «научение» животных. Однако то конкретное понимание процесса развития деятельности животных, которое вы­двигается сторонниками указанной точки зрения, являет­ся крайне упрощенным и по существу неверным.

Прежде всего ничем не обоснованным является про­тивопоставление друг другу в качестве различных гене­тических ступеней поведения, унаследованного и якобы не изменяющегося под влиянием внешних воздействий, и поведения, складывающегося в процессе индивидуально­го развития животного, в процессе его индивидуального приспособления. «Индивидуальное приспособление, — го­ворит И. П. Павлов, — существует на всем протяжении животного мира» 6 .

Противопоставление врожденного и индивидуально приспосабливающегося поведения возникло, с одной сто-

6 И. П. Павлов. Полное собрание трудов, т. III. М.—Л., 1949, стр. 415.

роны, из неправильного сведения механизмов деятельно­сти животных к ее врожденным механизмам, а с другой стороны, из старинного идеалистического понимания термина «инстинкт».

Простейшим видом врожденного поведения считают обычно тропизмы. Теория тропизмов применительно к животным была разработана Ж. Лебом. Тропизм, по Лебу, — это вынужденное автоматическое движение, обусловленное неодинаковостью физико-химических про­цессов в симметричных частях организма вследствие односторонности падающих на него воздействий 7 .

Примером такого вынужденного и неизменно проис­ходящего движения может служить прорастание корней растения, которые всегда направляются книзу, в какое бы положение мы ни ставили растение. Сходные явления можно наблюдать также и у животных, однако из этого не следует, что деятельность этих животных сводится к механизму тропизмов и что она не является пластичной, изменяющейся под влиянием опыта.

Так, например, известно, что большинство дафний обладают положительным фототропизмом, т. е. что они совершают вынужденные движения по направлению к свету. Однако, как показывают специальные опыты Г. Блееса и советских авторов (А. Н. Леонтьев и Ф. И. Басин), поведение дафний отнюдь не похоже на «поведение» корней растений 8 .

Эти опыты были поставлены следующим образом.

Был взят небольшой плоский аквариум, освещающий­ся только с одной стороны. В середине аквариума была укреплена изогнутая под прямым углом стеклянная труб­ка так, что одно из ее колен шло горизонтально под во­дой, а другое колено поднималось вертикально, выходя своим концом над поверхностью воды (рис. 20).

В начале опытов горизонтальное колено было направ­лено к освещенной стенке аквариума, т. е. навстречу к источнику света (положение, изображенное на рис. 20).

Дафнию брали пипеткой и помещали в трубку; она быстро опускалась по ее вертикальной части к точке из­гиба и начинала двигаться уже по горизонтальному ее

7 См. Ж. Леб. Вынужденные движения и тропизмы. М., 1924.

8 G. Н. Т. В l e e s. Phototropisme et experiences chez la Daphnie. «Archives Neerlandaise de Physiologie de l`Homme et des Animaux», v. III.

колену, направленному к свету. Выйдя затем из трубки, она далее свободно подплывала к освещенной стенке аквариума. Ее поведение, таким образом, оставалось строго подчиненным направлению действия света.

В следующих опытах трубка поворачивалась на 45° в сторону от линии распространения света (положение на рис. 20 обозначенное пунктиром).

В этих условиях дафния по-прежнему выходила из трубки, хотя и более медленно.

стадия элементарной сенсорной психики

Этот факт также легко объяснить с точки зрения тео­рии тропизмов. Можно предположить, что мы имеем здесь сложение двух направляющих, влияния света и влияния преграждающей прямое движение стенки трубки, повернутой теперь несколько в сторону. Сло­жение этих двух направ­ляющих и находит свое выражение в замедленном движении дафнии через трубку. Однако повторе­ние этих опытов показало, что прохождение дафнии по трубке происходит все скорее, пока, наконец, ее скорость не приближается к времени, требуемому для прохождения трубки, обращенной прямо к све­ту. Следовательно, у дафнии наблюдается известное упражнение, т. е. ее поведе­ние постепенно приспосабливается к данным условиям.

В следующих опытах трубка была повернута на 90°, затем на 130° и, наконец, на 180°. При всех этих положе­ниях трубки дафния также постепенно научалась доста­точно быстро выходить из нее, хотя в последних двух случаях ей приходилось двигаться уже от света в сто­рону, противоположную знаку ее тропизма (рис. 21).

Этот факт может тоже показаться на первый взгляд не противоречащим «вынужденности» фототропизма даф­нии; можно предположить, что под влиянием каких-то неизвестных нам условий положительный фототропизм дафний превратился в фототропизм отрицательный. Та-

кое предположение, однако, опровергается тем, что после выхода из трубки дафнии снова направляются к свету. Итак, как это вытекает из приведенных фактов, пове­дение дафний вовсе не сводится к машинообразным, вы­нужденным движениям — тропизмам. Тропизмы живот-

ных — это не элементы механического в целом поведе­ния, а механизмы элементарных процессов поведения, поведения всегда пластичного и способного перестраи­ваться в соответствии с изменяющимися условиями среды.

Другое понятие, с которым связано в психологии представление о врожденном, строго фиксированном по­ведении животных, — это понятие инстинкта. Существуют различные взгляды на то, что такое инстинкт. Наиболь­шим распространением пользуется понимание инстинк­тивного поведения как поведения наследственного и не требующего никакого научения, которое совершается под влиянием определенных раздражителей и раз навсегда определенным образом, совершенно одинаково у всех представителей данного вида животных. Оно является поэтому «слепым», не учитывающим особенностей внеш­них условий жизни отдельного животного и способным изменяться только в длительном процессе биологической эволюции. Такого понимания инстинкта придерживался, например, известный естествоиспытатель Фабр 9 .

Действительно, у большинства более высокоразвитых животных мы можем достаточно четко выделить, с одной стороны, такие процессы, которые являются проявлением сложившегося в истории вида, наследственно закреплен­ного поведения (например, врожденное «умение» некото­рых насекомых строить соты), а с другой стороны, такие процессы поведения, которые возникают в ходе «науче­ния» животных (например, пчелы научаются правильно выбирать кормушки с сиропом, отмеченные изображе­нием определенной фигуры).

Однако, как показывают данные многочисленных исследований, даже на низших ступенях развития живот­ных противопоставление видового и индивидуально вырабатываемого поведения невозможно. Поведение жи­вотных — это, конечно, и видовое поведение, но оно яв­ляется вместе с тем весьма пластичным.

Итак, строго фиксированное инстинктивное поведение вовсе не составляет начальной ступени в развитии дея­тельности животных. Это во-первых.

Во-вторых, и на более высоких ступенях развития деятельности животных не существует такого инстинк­тивного поведения, которое не изменялось бы под влия­нием индивидуальных условий жизни животного. Значит, строго говоря, поведения, раз навсегда фиксированного, идущего только по готовому шаблону, заложенному на­перед в самом животном, вообще не существует. Пред-

9 J.H.Fabre. Souvenirs entomologiques, Paris, 1910.

ставление о таком поведении животных является продук­том недостаточно углубленного анализа фактов. Вот пример одного из экспериментов, проведенного Фабром, который затем был уточнен.

Чтобы показать, что инстинктивное поведение отве­чает только строго определенным условиям жизни дан­ного вида и не способно приспосабливаться к новым, не­обычным условиям, Фабр поставил следующий опыт с одиночно живущими пчелами. Эти пчелы при своем пер­вом выходе из гнезда прогрызают прочную массу, кото­рой оно запечатано.

Одну группу гнезд Фабр закрыл бумагой так, что она непосредственно прилегала к самому гнезду, а другую группу гнезд он закрыл сделанным из такой же точно бумаги конусом, стенки которого несколько отстояли ог гнезда. Оказалось, что пчелы, которые вывелись в первой группе гнезд, прогрызли закрывающую их стенку гнезда, а вместе с ней и бумагу и вышли на свободу. Пчелы же, которые вывелись из гнезд второй группы, также про­грызли прочную стенку гнезда, но прогрызть затем стен­ку бумажного конуса, отделенную от гнезда некоторым пространством, они не могли и оказались, таким обра­зом, обреченными на гибель. Из этого эксперимента Фабр делал тот вывод, что насекомое может лишь не­сколько продолжить инстинктивный акт прогрызания при выходе из гнезда, но возобновить его в связи с обнару­жившейся второй преградой оно не в состоянии, как бы ничтожна ни была эта преграда, т. е. что инстинктивное поведение может выполняться только по заранее выра­ботанной шаблонной последовательности, совершенно слепо.

Этот эксперимент Фабра, однако, неубедителен. Пове­дение пчел в созданных Фабром условиях было недоста­точно им проанализировано. В дальнейшем было выяс­нено, что во втором случае пчелы оказываются в ловуш­ке не потому, что они не могут приспособить своего пове­дения ко второй, необычной в нормальных условиях су­ществования преграде (вторая бумажная стенка вокруг гнезда), а просто потому, что в силу устройства своих челюстей они не в состоянии захватить гладкую поверх-мость бумаги, хотя и пытаются это сделать. Другие опы­ты показали, что если против выхода из гнезда поместить стеклянную трубку, закрытую с противоположного кон-

ца глиной, то насекомое, после того как оно прогрызло стенку гнезда, проходит вдоль трубки и, натолкнувшись на вторую преграду (пробку из глины), прогрызает ее. Следовательно, акт прогрызания у пчел может в случае надобности возобновляться и, значит, их инстинктивное поведение не является полностью подчиненным заранее предустановленной последовательности составляющих его актов.

Таким образом, детальное изучение видового врож­денного поведения (у одиночных ос, пауков, раков, рыб и других животных) показывает, что оно отнюдь не со­стоит из неизменяющихся, наследственно закрепленных цепей движений, отдельные звенья которых автоматиче­ски следуют друг за другом, но что каждое из этих звеньев вызывается определенными чувственными сигна­лами, вследствие чего поведение в целом всегда регули­руется данными наличными условиями и может значи­тельно видоизменяться 10 .

Еще более очевидным является тот факт, что и так называемое индивидуальное поведение животных в свою очередь всегда формируется на основе видового, ин­стинктивного поведения и иначе возникнуть не может. Значит, подобно тому как не существует поведения, пол­ностью осуществляемого врожденными, не изменяющи­мися под влиянием внешних воздействий движениями, так не существует и никаких навыков или условных реф­лексов, не зависящих от врожденных моментов. Поэтому оба эти вида поведения отнюдь не должны противопо­ставляться друг другу. Можно утверждать лишь, что у одних животных большую роль играют врожденные ме­ханизмы, а у других — механизмы индивидуального опы­та. Но и это различие не отражает действительной ста­диальности развития психики в животном мире. Оно скорее указывает на особенности, характеризующие раз­ные линии эволюции животных. Так, например, врожден­ное поведение наиболее ясно проявляется у насекомых, которые, как известно, располагаются по одной из боко­вых ветвей эволюции.

Итак, различие в типе механизмов, осуществляющих приспособление животных к изменениям среды, не мо-

10 Е. Rabaud. La biologie des insectes et I.H. Fabre. «Journal de Psychologie», 1924, N 8.

жет служить единственным критерием развития их пси­хики. Существенным является не только то, каким пре­имущественно путем изменяется деятельность животных, но прежде всего то, каково само ее содержание и внут­реннее строение и каковы те формы отражения действи­тельности, которые с ней закономерно связаны.

Источник: http://lektsii.org/3-15496.html

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *